
The presentation discusses if and to what extent ROS can serve as a platform for
future autonomous driving functions.
It presents ideas from joint work of several people at BMW Car IT: Christoph
Ainhauser, Lukas Bulwahn, Andreas Hildisch, Stefan Holder,
Olexiy Lazarevych, Daniel Mohr, Tilmann Ochs, Michael Rudorfer, Oliver Scheickl,
Tillmann Schumm, Felix Sedlmeier

1

BMW Car IT in Munich, Germany, is strongly connected to the car manufacturer
BMW.
It was founded in 2001 as a full affiliate of BMW, and serves as a think tank and a
research department for BMW.
Our company‘s focus is on software development and software engineering for
future cars and our main task is to strengthen BMW‘s software competence.

At BMW Car IT, we view a vehicle as a connected, distributed network of complex
software systems. Mainly, we create innovations for future vehicles by building
software prototypes and new software solutions. The prototypes provide early and
reliable project decisions for the departments working on the series development.

Open source software not only promotes innovation, open source software
accelerates progress in software development. Active engagement in open-source
communities is a key contribution for us to build high-quality software with short
time-to-market cycles. A selection of open-source projects we maintain and regularly
contribute to are GENIVI, connman, Apache Etch and the Yocto Project. In the ROS
community, we work on a small project to build a Yocto Layer for ROS.

2

This graph shows our current roadmap for increasing automation of driving activities.

Currently, modern series cars have integrated assisted driving functions, such as adaptive
cruise control and parking assistants. In the future, this sort of driving automation will grow
in its functionality, but of course also, in its software complexity and safety requirements.

In ten years, we expect that modern cars can drive in some situations, like on freeways, with
only minor control from the driver. This is termed highly automated driving.
In thirty years time, we imagine that modern cars drive in every-day situations, allowing the
driver to conduct the vehicle only if he wishes to. This is termed autonomous driving.

There are many engineering tasks and research questions that have to be solved for this
vision. For highly automated driving, the challenges are to obtain a suitable environment
model around the car with affordable sensors, to predict movements of other cars on the
freeway, and to reliably observe the driver to ensure that she can take over whenever it is
neccessary. These challenges are currently addressed by the applied R&D cooperation
between BMW and Continental in the Highly Automated Driving project. This project is
planning to use ROS in their research vehicles.

BMW Car IT supports this project, but our main focus is basic research on autonomous
driving. For autonomous driving, the challenges in software are to develop suitable
architectures for safe fail-operational software systems of complex algorithms. The car must
perceive its environment in a robust manner, and handle that the sensors might get noisy
signals.It also must allow fail-operational power computing. This means it must execute the
functions correctly even if the hardware is faulty, but still, the algorithms are going to
require high-performance processors.
Furthermore, this system should be developed cost-efficiently. ROS provides a good
framework to join efforts on these research questions.

We are doing research how ROS could be deployed in a series car. This research question is
the main topic for the rest of this presentation.

3

The next three slides discuss the envisioned vehicle network, a high-level logical view
on the functional components and the software architecture of our computing
platform.

Current vehicles contain two computer domains. The one domain is for the in-vehicle
infotainment. For autonomous driving, this system is not in our focus. The other
domain is the network of interconnected ECUs, used nowadays for antilock braking,
adaptive cruise control and parking assistants. This domain, called the vehicle
domain, is built from sensors, controllers, and actuators. The typical characteristics
of this domain is that the domain‘s functions must fulfill hard real-time constraints,
and the domain has a low change rate, uses established technology and is extremely
cost-sensitive because it is installed in every car. However, autonomous driving
functions forseeably do not fit into this existing domain.

Autonomous driving needs hardware for two new domains: Hardware for the sensor
domain to get a robust environment model and hardware for the connectivity
domain to obtain information from other cars and globally stored maps.

The data provided by these two domains are put to use in a central computing
platform. This computing platform provides dependable, real-time, power
computing. To adjust to the latest technology and evolving algorithms for
autonomous driving, the computer platform shall be kept scalable and shall be easily
upgraded.

4

This slide shows the architectural building blocks for autonomous driving and how
they could be distributed among the two frameworks, AUTOSAR and ROS.
AUTOSAR is the existing automotive standard for model-driven development for
embedded systems and defines an operating system running in the vehicle domain.
The currently existing driver assistant functions are implemented with the current
AUTOSAR technology.

However, for autonomous driving, we envision a more evolved architecture.
Advanced functions use input from environment sensors, external information
sources, such as maps and car-to-car communication, to build an environment model
along the planned driving route. We envision these functions running in ROS nodes
on the central computing platform.

This environment model is distributed to a number of planners on different
abstraction levels: a motion planner, a maneuver planner, and a mission planer. The
motion planner computes the trajectory to a desired location that is a few meters
away, draws a virtual line which the car should move along, and controls the motion
controller so that it follows that trajectory. The maneuver planner devises the
movement on a higher level. It considers actions like changing the lane, overtaking a
car, or turning left, and then generates a sequence of points for the motion planner
to follow. The mission planer develops the movement on the highest level, and plans
which route to take to the final destination, similar to what is currently provided by
navigation systems.

5

On the central computing platform, we envision using these technologies:

The general operating system is provided by a Linux system set up with the Yocto
Project Infrastructure. In this system, ROS is used for messaging, calibration and
threading, and the application software is running in ROS nodes. To make the
transition for developers easy, one can describe the components in AUTOSAR using
the existing modeling tools, and generate ROS stubs for those components.

Our open source project meta-ros allows to cross-compile a Linux system with ROS
for various different architectures and embedded boards. The System Manager
works on system level, provides runtime supervision and monitoring and does a
global time-based orchestration. Currently, we are working on the system manager
internally, but we are planning to make this open source soon, and contribute it to
the ROS community.

Overall, we envision a scalable and dependable platform with an open-source
reference implementation that is useful across many different industries, not just for
the automotive domain.

6

The provided ROS contributions that are important to us are:
- a healthy environment, which the ROS community is developing with ROS Industrial
and ROS for Products
- quality management and safety qualification
- a market for development services
- a consortium of industrial partners to establish a joint roadmap for development

ROS should support fail-operational execution with dependable communication and
firm real-time support.
ROS should be cross-platform portable, e.g., to run ROS on Windows for use of
developers and on ARM for use in embedded devices.

For software architects, ROS should allow a model-driven development, as it has
been proven to be useful for analyses and assessment of large, complex systems.

7

For us of special interest are those issues that we have not seen addressed yet in the
community.

These are basically two concerns:
- support for robust execution: In case of failures, ROS needs mechanisms to
supervise nodes and allow back-up nodes to automatically take over with a hot or
cold standby.
- support for multiple versions: Messages might evolve during the development and
exist in different variations.

8

We suppose that ROS is currently the most suitable existing middleware for the
needs of autonomous driving. Most open topics are already addressed by the ROS
community, ROS for Products and Industrial ROS. We want to contribute to those
communities and push the development by our active engagement. For the specific
needs that we have identified, we want to contribute our current work, build up a
community to work on these issues together and are looking for partners with
common interests.

9

