
Automatability of Coupled Evolution of
Metamodels and Models in Practice

Markus Herrmannsdoerfer1, Sebastian Benz2, and Elmar Juergens1

1 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
{herrmama, juergens}@in.tum.de

2 BMW Car IT GmbH
Petuelring 116, 80809 München, Germany

sebastian.benz@bmw-carit.de

Abstract. Model-based software development promises to increase pro-
ductivity by offering modeling languages tailored to a problem domain.
Such modeling languages are often defined by a metamodel. In conse-
quence of changing requirements and technological progress, these mod-
eling languages and thus their metamodels are subject to change. Man-
ually migrating models to a new version of their metamodel is tedious,
error-prone and heavily hampers cost-efficient model-based development
practice. Automating model migration in response to metamodel adapta-
tion promises to substantially reduce effort. Unfortunately, little is known
about the types of changes occurring during metamodel adaptation in
practice and, consequently, to which degree reconciling model migration
can be automated. We analyzed the changes that occurred during the
evolution history of two industrial metamodels and classified them ac-
cording to their level of potential automation. Based on the results, we
present a list of requirements for effective tool support for coupled evo-
lution of metamodels and models in practice.

1 Introduction

Due to their high degree of specialization, domain-specific languages (DSLs) are
a promising approach to decrease software development costs by increasing de-
velopment productivity. Consequently, a variety of metamodel-based approaches
for DSL construction, such as Generative Programming [1], Model-Driven Ar-
chitecture [2] and Software Factories [3], have been proposed in recent years. In
response, DSLs are receiving increased attention in industry. BMW Car IT for
instance applies DSLs for the specification of user interfaces [4] and test case
generation [5]. With the integration of DSLs into industrial development prac-
tice, their maintenance is gaining importance. Although significant work in both
research and practice has been invested into tool support for the initial develop-
ment of DSLs, issues related to their maintenance are still largely neglected.

One important issue in language maintenance is the need to migrate exist-
ing models in response to the adaptation of their metamodel. As all software

2

artifacts, DSLs are subject to change. Although often neglected, even general-
purpose languages are evolving because of changing requirements and technolog-
ical progress [6]. Due to their close proximity to their problem domain, DSLs are
even more prone to change, since many problem domains undergo continuous
evolution. However, when a DSL’s metamodel changes, dependent artifacts such
as models, editors and interpreters may no longer obey the adapted metamodel.
Among the required reconciliation efforts, migration of models is probably most
challenging, since their number typically outweighs the other artifacts by far.
Manually migrating models to a new version of their corresponding metamodel
is costly, tedious and error-prone. In order to make cost-effective model-based
software development feasible in practice, methods and tools are required to
support efficient migration of models in response to changing metamodels.

We consider the evolution of a DSL as a coupled evolution3 of its meta-
model and models. Coupled evolution is a problem encountered in several areas
of computer science [7], e.g. schema evolution, grammar evolution and format
evolution. For each area, different approaches to reduce the associated effort –
each with specific advantages and weaknesses – have been proposed. Recently,
several approaches [8–10] have been transferred to the problem of metamodel
evolution. Unfortunately, the requirements for effective tool support for coupled
evolution of metamodels and models in practice are far from clear. On the one
hand, transferability of existing approaches for e. g. schemata or grammars to
the technical space of metamodels is difficult to assess: success of schema evo-
lution approaches has been governed, amongst other things, by their ability to
perform data migration in an online fashion; grammar evolution approaches have
to take care to preserve the class of context free grammars that the employed
parsing technology can handle – success or failure of these approaches in their
respective domain can thus not immediately be transferred to metamodeling.
On the other hand, and even more importantly, it is largely unknown to which
degree changes occurring during language maintenance in practice can be au-
tomated. Can suitable tool support substantially reduce migration effort or are
changes so domain specific, that they defy generic solutions? Given the increas-
ing importance of language maintenance in practice, we consider this lack of
understanding a precarious situation.

To provide a better understanding of language evolution in practice, and of
how much associated effort can be reduced by adequate tool support, this paper
presents a study of the histories of two industrial metamodels. To the best of
our knowledge, this is the first work to examine the automatability of coupled
evolution of metamodels and models in practice. The main contributions are:

– a classification of metamodel adaptation and corresponding model migration
operations according to their potential for automation,

– an empirical study of the evolution of two industrial metamodels with respect
to this classification, and

– a substantiated list of requirements for effective tool support in practice.
3 Throughout the paper, we use the term coupled evolution instead of the term co-

evolution, as we feel it better conveys the notion of coupling.

3

Outline. The remainder is structured as follows: In Section 2, we provide an
overview of existing approaches to coupled evolution of specifications and in-
stances. The proposed classification of combined metamodel adaptation and
model migration is presented in Section 3. In Section 4, we outline the setup
and results of the study we performed on the histories of two industrial meta-
models. In Section 5, we discuss the results and derive requirements for efficient
tool support. We conclude and give directions for future work in Section 6.

2 Related Work

When a specification changes, potentially all existing instances have to be recon-
ciled in order to conform to the updated version of the specification. Since this
problem of coupled evolution affects all specification formalisms (e. g. database or
document schemata, types or grammars) alike, numerous approaches for coupled
transformation [7] of a specification and its instances have been proposed. Apart
from the target specification formalism, existing approaches mainly differ in their
degree of automation and expressiveness, i. e. the kinds of coupled transforma-
tions they support. In this section, we outline different classes of approaches to
coupled evolution, namely schema, grammar, format and metamodel evolution,
focusing on their coupled evolution capabilities rather than on idiosyncrasies of
their target specification formalism.

Schema evolution – the migration of database instance data to an updated
version of the database schema – has been a field of study for several decades,
yielding a substantial body of research [11]. For the ORION database system,
Banerjee et al. propose a fixed set of change primitives that perform coupled
evolution of the schema and data [12]. While highly automated, their approach
is limited to local schema restructuring. To allow for non-local changes, Ferran-
dina et al. propose separate languages for schema and instance data migration
for the O2 database system [13]. While more expressive, their approach does not
allow for reuse of coupled transformation knowledge. In order to reuse recur-
ring complex coupled evolutions, SERF, as proposed by Claypool et al., offers
a mechanism to define arbitrary new high-level primitives [14], providing both
automation, reuse of coupled transformation knowledge and expressiveness.

Grammar evolution – the migration of textual programs to changes of their
underlying grammar – has been studied in the context of grammar engineering
[15]. Lämmel proposes a comprehensive suite of grammar transformation opera-
tions for the incremental adaptation of context free grammars [16]. The proposed
operations are based on sound, formal preservation properties that allow reason-
ing about the relationship between grammars before and after transformation,
thus helping engineers to maintain consistency of their grammar. However, the
proposed operations are not coupled since they do not take the migration of
words into account. Building on Lämmel’s work, Pizka and Juergens propose a
tool for the evolutionary development of textual languages called Lever, which is
also able to automate the migration of words [17]. Primitive grammar and word
evolution operations can be invoked from within a general-purpose language to

4

perform all kinds of coupled transformation. Similar to SERF, Lever provides a
mechanism to define arbitrary new high-level primitives.

Format evolution denotes the migration of a class of documents to changes
to their document schema. Lämmel and Lohmann suggest operators for for-
mat transformation, from which migrating transformations for documents are
induced [18]. The suggested operators are based on Lämmels work on grammar
adaptation. Furthermore, Su et al. propose a complete, minimal and sound set
of evolution primitives for formats and documents and show that they preserve
validity and well-formedness of both formats and documents [19]. Even though
both approaches are able to automate document migration for a fixed set of
format changes, they are not able to handle arbitrary, complex migrations.

Metamodel evolution denotes the migration of models in response to changes
to their metamodel. In order to reduce the effort for model migration, Sprin-
kle proposes a visual, graph-transformation based language for the specifica-
tion of model migration [20]. Gruschko et al. envision to automatically derive
a model migration from the difference between two metamodel versions [9, 10].
Wachsmuth adopts ideas from grammar engineering and proposes a classification
of metamodel changes based on instance preservation properties [8]. In order to
automate model migration, the author plans to provide a predefined set of high-
level transformations which represent the defined classes and are able to adapt
the metamodel as well as to migrate models. Due to lack of reports on experience
of their application, little is known on how effectively these approaches can be
applied to coupled evolution of metamodels and models in practice.

In a nutshell, apart from differences between their target specification for-
malisms, existing approaches to coupled evolution mainly differ in the provided
level of automation, expressiveness, reuse of coupled transformation knowledge
and well defined preservation properties. To our best knowledge, little is known
on the combination of capabilities that best supports the requirements faced
during development and maintenance of metamodels and models in practice.

3 Classification

In this section, we introduce a classification that allows us to determine how far
coupled evolution can be automated. Usually the metamodel is adapted manu-
ally and models are migrated at different levels of automation. The first level of
automation is to encode a transformation that is able to automatically migrate
a single model. A higher level of automation is achieved, if a single transforma-
tion can be used to migrate all existing models of a metamodel. When manually
specifying such transformations, one discovers that they contain recurring pat-
terns. Thus, the third level of automation corresponds to the application of
generic transformations embodying such recurring patterns that automate both
metamodel adaptation and model migration. In order to define the levels of
automation, we introduce the notion of a coupled change. A coupled change is
defined as a combination of an adaptation of the metamodel and the reconcil-
ing migration of the models conforming to that metamodel. Coupled changes

5

do not comprise metamodel changes that do not require a migration of models,
e. g. additive changes. In the following, we introduce the classes in combination
with representative examples, working our way up from lower to higher levels of
potential automation.

3.1 Running Example

We use a simple modeling language for hierarchical state machines to illustrate
our classification. Figure 1 depicts the metamodel and a corresponding model in
both concrete and abstract syntax.

StateMachine

name: String

State

CompositeState

trigger: String

Transition

name: String

Action

state

1..*

1 root

* effect

outgoing

*

1

target

m: StateMachine

name = „trafficLight“

c: CompositeState

name = „red“

s1: State

name = „green“

s3: State

trigger = „request“

t1: Transition

trigger = „timeOut“

t3: Transition

name = „setTimer“

a1: Action

effect

root

state state

outgoing outgoing

target

target

name = „wait“

s2: State

trigger = „timeOut“

t2: Transition

name = „setTimer“

a2: Action

effect

outgoing

state

target

Metamodel Model

trafficLight

red

wait

green

request /

setTimer

timeOut /

setTimer

timeOut

Fig. 1. State machine example

The root element of a state machine model is of type StateMachine and
contains the root state. A State may be decomposed into sub states through its
subclass CompositeState. A Transition has a target state and relates to its source
state through the outgoing composition. Upon activation of a transition by its
trigger, a sequence of Actions is performed as effect. Strings are used for state and
action names and to denote triggers. The model describes the simplified behavior
of a controller for a pedestrian traffic light and uses all the constructs defined by
the metamodel. When the traffic light is red and a pedestrian requests a green
phase, the controller transitions to wait and activates a timer (setTimer). When
its timeOut occurs, the controller transitions to green and activates the timer
again. When its timeOut occurs, the controller returns to state red.

6

3.2 Model-Specific Coupled Change

A coupled change is called model-specific if the migrating transformation is spe-
cific to a single model and thus cannot be reused to migrate different models of
the same metamodel. This happens when the specification of a migration requires
information which varies from model to model. Figure 2 depicts both metamodel
and model after an example of a model-specific coupled change4. In the meta-
model, the class Action is refined in order to group actions into specialized kinds.
At the same time, the attribute name is deleted, by means of which actions were
assigned a meaning before. As the class Action is itself made abstract, model
elements of this type need to be migrated to a refined type in order to reestab-
lish conformance and preserve information. As the metamodel was not precise
enough to restrict the syntax of the action name, different names might be used
in different models to denote the same kind of action. Therefore, model-specific
information is required to be able to completely specify the migration.

Action

StartTimer StopTimer

Metamodel Model

trigger = „request“

t1: Transition

trigger = „timeOut“

t3: Transition

name = „setTimer“

a1: Action

effect

trigger = „timeOut“

t2: Transition

name = „setTimer“

a2: Action

effect

Fig. 2. Refinement of Action

3.3 Model-Independent, Metamodel-Specific Coupled Change

When a coupled change is not model-specific and all models of a metamodel can
be automatically migrated, it is called model-independent. If the change is specific
to the metamodel’s domain, it is called metamodel-specific. In that case, its reuse
across different metamodels makes no sense. Figure 3 depicts the impact of a
metamodel-specific coupled change, which introduces a separate class for events.
In the metamodel, the trigger attribute is factored out into the class Event. The
state machine then administers all events and the transitions only refer to them
by the trigger association. Since the attribute trigger is removed at the same
time, models are no longer conforming to the modified metamodel. To readapt
the model to the metamodel, an instance of Event has to be created for each
distinct trigger name and to be assigned to the parent state machine. Therefore,
only one event with name timeOut is created in the example and both transitions
refer to it. As the migration is rather specific and therefore not likely to recur
very often, it makes no sense to reuse this coupled change across metamodels.
4 For better overview, modified elements are highlighted by a dashed box.

7

name: String

Event
event

*

0..1 trigger

StateMachine

name: String

State Transition

1 root
outgoing

*

1

target

m: StateMachine

name = „trafficLight“

c: CompositeState

name = „red“

s1: State

name = „green“

s3: State

t1: Transition t3: Transition

root

state state

outgoing outgoing

target

target

name = „wait“

s2: State

t2: Transition

outgoing

state

target

name = „request“

e1: Event

name = „timeOut“

e2: Event

event event

trigger trigger

trigger

Metamodel Model

Fig. 3. Introduction of Event

3.4 Metamodel-Independent Coupled Change

A coupled change is called metamodel-independent if both metamodel adaptation
and model migration do not depend on the metamodel’s domain and can be
expressed in a generic manner. If they are likely to recur in the evolution of
different metamodels, it makes sense to generalize them into an operation that
that can be reused to evolve other metamodels. Figure 4 depicts the impact of
a metamodel-independent coupled change, which is a first step to introduce the
concept of concurrent regions to the modeling language. In the metamodel, the
class Region is introduced as a container of the directly contained sub states
within a CompositeState. To compensate the change in a model, the migration
creates a Region as child of each CompositeState and moves all directly contained
sub states to the newly created Region. A possible generalization of this coupled
change extracts a collection of features of one class into a new class which is
accessible from the old class via a single-valued composition to the new class.

3.5 Summary

Figure 5 depicts an overview of the classification, and is augmented by a sepa-
rate class for metamodel-only changes which do not require a migration of the
models. For each class of coupled changes, the figure indicates to which level
they are specific: The higher the level on which a coupled change depends, the
more can be reused and therefore automated. A model-specific coupled change
can only be used for a subset of the models of a metamodel. A metamodel-
specific coupled change provides automation for all models of a metamodel. A
metamodel-independent coupled change can be even applied to all metamodels
and their models.

8

Region

region 1

state

1..* name: String

State

CompositeState
r: Region

name = „red“

s1: State

name = „green“

s3: State

region

state state

name = „wait“

s2: State

state

m: StateMachine

name = „trafficLight“

c: CompositeState

root

Metamodel Model

Fig. 4. Introduction of Region

Model-

specific

Metamodel-

specific

Metamodel-

independent

Coupled

change
Metamodel

Model

Meta-metamodel

conforms to

conforms to

A
u

to
m

a
ta

b
ili

ty

Metamodel

Model Model Model

conforms to

conforms to

conforms to conforms to

Metamodel-

only change

Language

change

Fig. 5. Classification of coupled changes

4 Study

In order to asses the potential for automation in practice, we applied the classi-
fication to the histories of two industrial metamodels. In this section, we present
the execution and the results of this study.

4.1 Goals

The study was performed to answer which fraction of language changes

– requires no model migration?
– is model-specific and thus defies automation of migration?
– is metamodel-independent and thus generalizable across metamodels?

9

4.2 Setup

Two industrial metamodels from BMW Car IT were chosen as input. Both meta-
models were developed and maintained by several persons. FLUID (FLexible User
Interface Development) is a framework for rapid prototyping of human machine
interfaces in the automotive domain [4]. A metamodel defines a modeling lan-
guage that enables the abstract specification of a human machine interface. An
executable prototype of the human machine interface can be generated from a
model written in that language. TAF-Gen (Test Automation Framework - Gen-
erator) is a framework to automatically generate test cases for human machine
interfaces in the automotive domain [5]. The metamodel defines a statechart
variant, a structural screen model and a test case language.

The histories of the metamodels were only available in the form of snapshots.
A snapshot depicts the state of a metamodel at a particular point in time. As
a consequence, further information had to be inferred to obtain the coupled
changes leading from one metamodel version to the next. In order to achieve
this, we performed the following steps5:

1. Extraction of metamodel versions (1 person week): Each available version of
the metamodel was obtained from the revision control system used in the
development of the metamodel6.

2. Comparison of subsequent metamodel versions (2,5 person weeks): Since
both revision control systems used are snapshot-based, they provide no in-
formation about the sequence of changes which led from one version to the
following. Therefore, successive metamodel versions had to be compared in
order to obtain the changes in a difference model. The difference model con-
sists of a collection of primitive changes from one metamodel version to the
next and has been determined with the help of tool support7.

3. Detection of coupled changes (3 person weeks): Some primitive changes only
make sense when regarded in combination with others. When an attribute is
for example removed from a class and an attribute with the same name and
type is added to its super class, then the two changes have to be interpreted
as a compound change in order to conserve the values of the attribute in a
model. Therefore, primitive changes were combined based on the informa-
tion how corresponding model elements were migrated. The coupled changes
between metamodel versions were documented in a table.

4. Classification of coupled changes (1 person week): The classification was
applied to each coupled change.

5 In order to get an impression of the extent of the study, the approximate effort is
mentioned in parenthesis for each step.

6 The metamodels were specified by the Ecore metamodeling language from the Eclipse
Modeling Framework (EMF, http://www.eclipse.org/modeling/emf/).

7 Two prototypes now contributed to the EMF Compare tool (http://www.eclipse.
org/modeling/emft/?project=compare) were applied.

10

4.3 Results

In this section, we present the results of the study in a compiled form. The full
results are shown in Table 1 in the appendix8. In order to get a better impression
of the evolution, Figure 6(a) illustrates the number of metamodel elements for
each version of the FLUID metamodel. The area is further partitioned into the
different kinds of metamodel elements. The figure clearly shows the transition
from an initial development phase to a maintenance phase, where the grow in
number of metamodel elements slows down. Figure 6(b) shows which fraction
of all language changes falls into each class. 54% of the language changes can
be classified as metamodel-only. No coupled change can be classified as model-
specific, 15% as metamodel-specific and 31% as metamodel-independent. Note
that each language change was counted as one, even though some changes were
more complex than others.

 Enum. literal
 Enumeration

 Reference

 Attribute

 Class

 Package

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25

Version

N
u

m
b

e
r

o
f

m
e
ta

m
o

d
e
l

e
le

m
e
n

ts

(a) Evolution in numbers

Model-

specific

0 (0%)

Metamodel-

specific

34 (15%)

Metamodel-

only

119 (54%)
Metamodel-

independent

70 (31%)

(b) Classification

Fig. 6. Evolution of FLUID metamodel

Figure 7(a) depicts the number of metamodel elements for each version of
the TAF-Gen metamodel. In this case the passage from the initial development
phase to the maintenance phase is more distinctive and happens around version
13. Figure 7(b) illustrates the fragmentation of all encountered language changes
into the four classes. 47% of the language changes have not required a migration
at all. As in the history of FLUID, no coupled change is model-specific. The
fraction of metamodel-independent coupled changes is even higher than in case
of FLUID, amounting to 48% compared to 5% classified as metamodel-specific.

8 Due to a non-disclosure agreement, we cannot provide more detailed information.
Informal description of the language changes are made available through our website
http://wwwbroy.in.tum.de/~herrmama/cope.

11

 Enum. literal

 Enumeration

 Data type

 Reference

 Attribute

 Class

 Package

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Version

N
u

m
b

e
r

o
f

m
e
ta

m
o

d
e
l

e
le

m
e
n

ts

(a) Evolution in numbers

Metamodel-

only

63 (47%)

Model-

specific

0 (0%)

Metamodel-

independent

64 (48%)

Metamodel-

specific

7 (5%)

(b) Classification

Fig. 7. Evolution of TAF-Gen metamodel

4.4 Discussion

The study showed that in practice the history of a metamodel can be split into
mostly small language changes. We found out that most metamodel changes
required a migration of existing models. Furthermore, snapshots from different
metamodel versions are not sufficient to derive the model migration. As we have
not found any model specific coupled changes, we would have been able to spec-
ify transformations to automate migration of all models. However, model-specific
coupled changes cannot be entirely excluded and we plan to further investigate
them. More than two thirds of all coupled changes were classified as metamodel-
independent which provides a large potential for further automation. We also
found a small number of metamodel-specific coupled changes and thus the cou-
pled evolution was a combination of both metamodel-specific and -independent
coupled changes.

4.5 Threats to Validity

The result of the study suggests a high degree of potential automation for model
migration. However, threats need to be mentioned which can affect the validity
of the result. They are presented according to the steps of the execution to which
they apply together with the measures taken to mitigate them:

1. It was assumed that committing the metamodel to the revision control sys-
tem indicates a new version of the metamodel. Therefore, only the primi-
tive changes from one commit to the next were considered to be combined.
However, metamodels were sometimes committed in a premature version
and hence complex changes which span several commits of the metamodel
threaten the validity. Even though enacted development guidelines at BMW

12

Car IT forbid to commit artifacts in a premature version, primitive changes
of other metamodel versions were also taken into account when a migration
could not be determined otherwise.

2. A prerequisite to determine the differences is the calculation of a match-
ing between the elements of one metamodel version and those of the next.
However, in the absence of unique and unchangeable element identifiers, the
comparison cannot always be performed unambiguously [21]. Furthermore,
the difference model leaves out changes which have been overwritten by oth-
ers in the course of the evolution from one version to the next. In order to
mitigate this threat, the correctness of the primitive changes was validated
in close cooperation with the metamodel developers.

3. Unfortunately, models were not available for all versions of the corresponding
metamodels. This poses a threat to the correct formation of coupled changes,
since primitive changes were combined based on the associated migration.
In order to mitigate this risk, the metamodel developers were exhaustively
questioned about the correctness of the derived migration.

4. The differentiation between metamodel-specific or -independent coupled
changes is not 100% sharp. Even though a generalization may be constructed
for the most sophisticated changes, it is unlikely that it can be reused on any
other metamodel. In order to mitigate this risk, we chose a conservative strat-
egy: When we were not sure whether reuse makes sense, we classified such a
coupled change rather metamodel-specific than metamodel-independent.

5 Requirements for Automated Coupled Evolution

Based on the results of the analysis, we discuss several requirements that an
approach must fulfill in order to profit from the automation potential in practice.

Reuse of migration knowledge. In order to profit from the high number of
metamodel-independent coupled changes found in the study, a practical ap-
proach needs to provide a mechanism to specify metamodel adaptation and
corresponding model migration independent of a specific metamodel.

Expressive, custom migrations. As there was a non-negligible number of
metamodel-specific coupled changes, the approach must be flexible enough
to allow for the definition of custom metamodel adaptation and model mi-
gration. Since metamodel-specific changes can be arbitrarily complex, the
formalism must be expressive enough to cover all evolution scenarios.

Modularity. In order to be able to specify the different kinds of coupled changes
independently of each other, a practical approach must be modular. Mod-
ularity implies that the specification of a coupled change is not affected by
the presence of any other coupled change.

History. Since models may be distributed and therefore not all models may be
available during metamodel adaptation, a history is required that comprises
the information to migrate the models at a later instant.

13

Existing approaches to automate model migration only satisfy the stated
requirements to a certain degree: Sprinkle’s visual language [20] does not provide
a construct for the reuse of migration knowledge. Gruschko’s approach [9, 10]
leaves open how it achieves modularity and how it deals with complex custom
migrations. And it remains unclear whether Wachsmuth’s high level primitives
[8] are able to perform all kinds of migration scenarios. In order to fully profit
from the automatablity of coupled evolution in practice, an approach is needed
that fulfills all the presented requirements.

6 Conclusion

We presented a study of the evolution of two real world metamodels. Our study
confirmed that metamodels evolve in practice and that most metamodel changes
require a migration of existing models. The study’s main goal was to determine
the potential for reduction of language evolution efforts through appropriate
tool support. To this end, we categorized metamodel changes according to their
degree of metamodel specificity. When a change is metamodel-specific, the cor-
responding model migration is as well. Otherwise, the model migration can be
reused to migrate models that obey to different metamodels. Our results show
that there is a large potential for the reuse of coupled evolution operations, be-
cause more than two thirds of all coupled changes were not metamodel-specific.
If metamodel adaptation and model migration are encapsulated into a coupled
operation, it is possible to reuse the operation for the evolution of different meta-
models and their models. Such reuse of already tested coupled evolution oper-
ations can reduce maintenance effort and error likelihood. Nevertheless, a third
of the coupled changes were specific to the metamodel’s domain and therefore
required a custom model migration. A metamodel hence evolves in a sequence
of metamodel-specific and -independent changes. Therefore, an approach for au-
tomated model migration must support the reuse of coupled changes as well
as the definition of new metamodel-specific changes. We hope that the results
of this study can provide helpful input to guide the development of effective
tool-support for coupled evolution of metamodels and models in practice.

References

1. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and
applications. Addison-Wesley, New York, NY, USA (2000)

2. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Archi-
tecture: Practice and Promise. Addison-Wesley, Boston, MA, USA (2003)

3. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools. Wiley (2004)

4. Hildisch, A., Steurer, J., Stolle, R.: HMI generation for plug-in services from
semantic descriptions. In: Proceedings of the 4th International Workshop on Soft-
ware Engineering for Automotive Systems (SEAS), Washington, DC, USA, IEEE
Computer Society (2007)

14

5. Benz, S.: Combining test case generation for component and integration testing.
In: Proceedings of the 3rd International Workshop on Advances in Model-based
Testing (A-MOST), New York, NY, USA, ACM (2007) 23–33

6. Favre, J.M.: Languages evolve too! changing the software time scale. In: Pro-
ceedings of the Eighth International Workshop on Principles of Software Evolution
(IWPSE), Washington, DC, USA, IEEE Computer Society (2005) 33–44

7. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: First
International Workshop on Software Evolution Transformations. (2004)

8. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: ECOOP
2007. Volume 4609 of LNCS., Springer Berlin / Heidelberg (2007) 600–624

9. Becker, S., Gruschko, B., Goldschmidt, T., Koziolek, H.: A Process Model and
Classification Scheme for Semi-Automatic Meta-Model Evolution. In: Proc. 1st
Workshop MDD, SOA und IT-Management (MSI), GI, GiTO-Verlag (2007) 35–46

10. Gruschko, B., Kolovos, D., Paige, R.: Towards synchronizing models with evolv-
ing metamodels. In: Proceedings of the International Workshop on Model-Driven
Software Evolution. (2007)

11. Rahm, E., Bernstein, P.A.: An online bibliography on schema evolution. SIGMOD
Rec. 35(4) (2006) 30–31

12. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. Volume 16., New York, NY, USA,
ACM (1987) 311–322

13. Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., Madec, J.: Schema and database
evolution in the O2 object database system. In: Proceedings of the 21th Interna-
tional Conference on Very Large Data Bases (VLDB), San Francisco, CA, USA,
Morgan Kaufmann (1995) 170–181

14. Claypool, K.T., Jin, J., Rundensteiner, E.A.: SERF: schema evolution through
an extensible, re-usable and flexible framework. In: Proceedings of the seventh
international conference on Information and knowledge management (CIKM), New
York, NY, USA, ACM (1998) 314–321

15. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3) (2005) 331–380

16. Lämmel, R.: Grammar testing. In: Fundamental Approaches to Software Engi-
neering. (2001) 201–216

17. Pizka, M., Juergens, E.: Automating language evolution. In: Proceedings of the
First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering
(TASE), Washington, DC, USA, IEEE Computer Society (2007) 305–315

18. Lämmel, R., Lohmann, W.: Format Evolution. In: Proceedings of the 7th In-
ternational Conference on Reverse Engineering for Information Systems (RETIS).
Volume 155., OCG (2001) 113–134

19. Su, H., Kramer, D., Chen, L., Claypool, K., Rundensteiner, E.A.: XEM: Manag-
ing the Evolution of XML Documents. In: Proceedings of the 11th International
Workshop on research Issues in Data Engineering (RIDE), Washington, DC, USA,
IEEE Computer Society (2001) 103

20. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model
evolution. Journal of Visual Languages and Computing 15 (2004) 291–307

21. Robbes, R., Lanza, M.: A change-based approach to software evolution. Electron.
Notes Theor. Comput. Sci. 166 (2007) 93–109

15

Metamodel evolution Model migration Class FLUID TAF-GEN Overall
add package no migration required MMO 0 10 10
move package compensate move MMI 0 8 8
remove empty package no migration required MMO 0 4 4
add enumeration no migration required MMO 0 4 4
change order of enumeration no migration required MMO 0 1 1
rename enumeration literal compensate rename MMI 0 4 4
add class no migration required MMO 0 3 3
add sub class no migration required MMO 45 2 47
change super class remove data of lost features MMI 0 1 1
move class compensate move MMI 5 18 23
remove class remove objects MMI 1 0 1
remove sub class remove objects MMI 1 0 1
rename class compensate rename MMI 5 5 10
set class abstract migrate objects to sub classes MMS 1 0 1
specialize super class (optional features) no migration required MMO 3 1 4
add optional attribute no migration required MMO 15 5 20
add required attribute set default value MMI 5 1 6
change type of attribute convert values MMI 2 1 3
decrease upper bound of attribute remove superfluous values MMS 1 0 1
drop attribute as key of class no migration required MMO 6 0 6
extend multiplicity of attribute no migration required MMO 5 1 6
make attribute an key of class guarantee uniqueness MMS 3 0 3
move optional attribute to super class no migration required MMO 1 0 1
move required attribute to super class set default value MMI 1 0 1
remove attribute remove attribute values MMI 11 1 12
rename attribute compensate rename MMI 3 1 4
add optional association no migration required MMO 5 4 9
add optional composition no migration required MMO 3 3 6
add required composition create objects MMI 3 0 3
change type of association remove links MMI 5 0 5
change type of composition migrate objects MMS 1 0 1
decrease upper bound of association remove superfluous links MMS 1 1 2
drop persistence of association remove links MMI 0 1 1
establish persistence of association no migration required MMO 0 1 1
extend multiplicity of association no migration required MMO 14 2 16
generalize type of association no migration required MMO 6 4 10
increase lower bound of association no migration required MMO 2 0 2
make assocation bidirectional no migration required MMO 0 3 3
move association by association move links accordingly MMI 0 1 1
move association to sub classes no migration required MMO 0 2 2
move optional association to super class no migration required MMO 1 1 2
remove composition remove part objects MMI 3 0 3
remove cross association remove links MMI 1 4 5
remove opposite association no migration required MMO 0 2 2
rename association compensate rename MMI 7 3 10
transform association to composition no migration required MMO 1 2 3
transform composition to association assign otherwise MMS 22 3 25
add proxy add proxy object MMI 0 1 1
extract part class add part objects MMI 6 2 8
extract super class no migration required MMO 3 1 4
inline part class remove object of inlined class MMI 0 1 1
integrate association into another move data accordingly MMI 4 0 4
integrate sub class migrate objects to super class MMI 0 2 2
integrate super class no migration required MMI 0 1 1
merge sub classes migrate objects to common class MMI 1 0 1
remove proxy remove proxy objects MMI 1 0 1
replace association by key set identifier based on links and remove links MMI 2 0 2
replace key by association add links based on identifier MMI 2 0 2
replace inheritance by composition add part object MMI 0 1 1
use part class add part objects MMI 1 1 2
use super class no migration required MMO 1 0 1
add optional part structure no migration required MMO 8 7 15
remove part structure remove data MMI 0 6 6
revolution complex migration MMS 5 3 8

223 134 357
Metamodel-only MMO 119 63 182

Metamodel-independent MMI 70 64 134
Metamodel-specific MMS 34 7 41

Model-specific MS 0 0 0

co
m

p
o

si
te

co
m

p
l.

at
tr

ib
u

te
p

ac
k.

en
u

m
.

cl
as

s
as

so
ci

at
io

n

Table 1. Number of occurred language changes and their classification

