Extending the Devices Profile for Web Services
for secure mobile device communication

Sebastian Unger, Elmar Zeeb,

Frank Golatowski and Dirk Timmermann

University of Rostock
Faculty for CS and EE

Holger Grandy
BMW CarIT GmbH
Munich, Germany
holger.grandy @bmw-carit.de

Institute of Applied Microelectronics and Computer Engineering

Rostock, Germany

(sebastian.unger/elmar.zeeb/frank.golatowski/dirk.timmermann) @uni-rostock.de

Abstract—This paper describes a new security profile and
propose a security architecture for the Devices Profile for
Web Services (DPWS). DPWS defines a Web Service based
architecture for networked embedded devices. A requirements
analysis on given use cases in the field of in-vehicle-infotainment
(IVI) systems showed that the original security profile of DPWS
lacks of certain security issues. Thus, our proposed security
profile addresses three common security problems of DPWS. The
original security profile of DPWS does not support fine-grained
security requirements, direct authentication between devices
without a third party and it does not propose a comprehensive
authorization concept. In contrast to existing research work our
solution solves these problems and complies with the original
specifications. As a case study two applications in the IVI domain
were implemented to show that our proposed security profile
meets the missing requirements.

I. INTRODUCTION

The Devices Profile for Web Services (DPWS) [1] defines
a subset of the WS-* specifications suitable for small-scale,
embedded devices. Thus, DPWS fosters interoperability be-
tween small embedded devices and fully Web-Service-capable
computers such as web servers. It also brings the advantage of
using the same technology for communication among devices
in an LAN and through a WAN such as the internet.

Since communication security plays an important role in
real-world scenarios, DPWS defines a flexible security model
by means of interchangeable security profiles. Furthermore,
the specification recommends such a security profile. This
paper analyzes the security mechanisms of DPWS regarding a
use case in the field of in-vehicle-infotainment (IVI), identifies
weaknesses and proposes a solution. The paper is structured
as follows: As the DPWS specification defines an optional
security profile, it is explained and discussed in section II.
Section III gives an overview over complementary specifica-
tions and related work regarding security in DPWS. Since the
DPWS security profile is not suitable under certain — yet not
uncommon — conditions this paper proposes a new security
profile and a way how to implement it in section IV. After
a short glance at a prototype implementation and an IVI use
case in section V an outlook and a conclusion will be given
in sections VI and VII.

II. BAsIcS CONCEPTS

DPWS defines a subset of existing and specially created
WS-* specifications which enables small-scale embedded de-
vices to communicate over Web Services. A DPWS-Device
consists of exactly one Hosting Service and an arbitrary
number of Hosted Services. The Hosting Service represents
the Device itself and is responsible for discovery and descrip-
tion. Discovery is the process of several DPWS-Devices and
Clients finding each other in a local network. The messages
and communication flow are defined by the WS Dynamic
Discovery (WSDD) specification ([2]). After discovering each
other, description takes place. This means that Clients and
Devices exchange metadata information about the capabili-
ties of the Devices and their Hosted Services. The Hosted
Services implement the actual functionality of a Device.
DPWS-Clients can not only access a Device’s Hosted Services
by traditional request-response-communication. Instead, the
specification WS-Eventing ([3]) provides a publish-subscribe-
mechanism. Since in real world scenarios, communication
security plays a fundamental role, DPWS provides a flexible
security mechanism by means of security profiles. A profile
can be considered as a set of rules devices agree on for
securing their communication.

A. The DPWS Security Profile

The DPWS standard defines a generic optional security pro-
file. It basically relies on X.509.v3 certificates and TLS/SSL-
secured transport channels. To optionally ensure message in-
tegrity and authenticity during the discovery-process, messages
can be signed using the WSDD Compact Signature format,
which is a lightweight derivate of XML Signature ([4]). The
keys for creating and verifying signatures are provided by
the certificates’ public key infrastructure. The certificates are
also used to establish TLS/SSL connections to provide secure
channels which ensure message integrity and confidentiality.
The use of secure channels is mandatory for the exchange of
metadata (description phase) and optional for service invoca-
tions.

B. Requirements beyond the standard profile

The security profile recommended by the DPWS standard
is supposed to define a “baseline for interoperable security”
which means that it is intentionally kept simple. As a result,
there are no recommendations on how to

1) exchange certificates

2) authenticate certificates without a third party

3) apply different mechanisms for providing integrity or
confidentiality or

4) apply different levels of security for a service’s methods
and event sources and

5) cope with authorisation

which will be discussed in further detail.

1) How to exchange certificates: Certificates are usually
signed by a Certificate Authority (CA) whose certificate is
also signed by another CA. This way, certificate hierarchies
are set up. When a device receives an unknown certificate,
it can traverse through this hierarchy until it finds a trusted
CA, which means that the device has a local copy of the CA’s
certificate. It can then verify that the received certificate is
trustworthy and that its content has never been modified. This
mechanism often demands access to the internet to be able to
download the certificates of the various CAs. Besides, this can
cause high traffic. An average base 64-coded X.509-certificate
is of around 1 kByte of size, so each CA’s certificate needed
to resolve the chain is another kByte. This causes an amount
of traffic and necessary memory that can become an issue on
small-scale embedded devices.

2) How to authenticate certificates without a third party:
A certificate is associated with a device by containing the
device’s UUID. However, there remains a problem for the
user to associate a device to an identity (e.g. is it the user’s
cell phone requesting some access or someone else’s phone?).
Comparing the UUIDs manually is not user-friendly since they
consist of sixteen bytes represented by 32 hexadecimal digits
and because the device’s UUID might even be only accessible
by navigating through a menu-structure. To avoid both lengthy
and therefore costly certificate chain resolutions and making
the user compare arbitrary looking characters (such as UUIDs),
it would be desirable to establish trust between devices directly
without requiring a third party.

3) How to apply different mechanisms for providing in-
tegrity or confidentiality: and

4) apply different levels of security for a service’s methods
and event sources: Another issue not covered by the standard
security profile is the ability to offer or require alternative
security mechanisms for providing message integrity or con-
fidentiality. An example for TLS not being a sufficient way
for encryption would be multi-hop communication with end-
to-end encryption. Consider a device D communication with
a web server W using a smartphone S as internet gateway
(fig. 1. If addressing happens on SOAP-level but TLS provides
encryption on transport level, the gateway S needs to decrypt
all data to access addressing information. However, encryption
on message level would allow to only encrypt the SOAP-

2 @

%DHSHWﬁ»

b)
B - 5
D S w

Fig. 1. Point-to-Point- (a) and End-to-End-Encryption (b)

payload instead of the whole transport layer and therefore
enables access to the SOAP-addressing-information without
decrypting the message. Besides privacy-related issues, this
also prevents intermediaries from unnecessary expensive en-
and decryptions. To enable the use of alternative security
mechanisms, a procedure is needed to indicate acceptable
ways to provide integrity and confidentiality. Furthermore, the
DPWS security profile provides no opportunity for a fine-
grained security configuration. According to the specification,
a device offers security by means of a secure channel and a
service can decide whether to make use of it or not. It would
be desirable to be able to configure for each service’s method
and event source if they require any kind of security and what
security mechanisms they require or offer.

5) How to cope with authorization: Finally, an important
issue is authorization of requests. Devices’ users shall be able
to give or deny permissions for different clients to access a
service, its methods and event sources. An even finer-grained
authorization model comes in handy if access to arbitrary
resources such as data sources or physical signals shall be
controlled, even without knowledge of the user.

ITI. COMPLEMENTARY SPECIFICATIONS AND RELATED
WORK

There exist a few security-related WS-* specifications as
well as proposals for alternative security profiles or architec-
tures for DPWS that will be discussed in this section. The
specification WS-Security ([5]) basically defines how to embed
security-related tokens into a SOAP message. Tokens can for
example be cryptographic signatures, encrypted message parts
or certificates. This specification is indirectly referenced by
DPWS since the WS-DD Compact Signature format is derived
from the signature format defined in WS-Security and XML-
Signature. Besides, it describes a way to embed encrypted
message parts into SOAP messages with XML-Encryption
([6]) and therefore provides encryption on message level.

To combine the advantages of symmetric and asymmetric
encryption methods, the specification WS-SecureConversation
([7]) provides the message frameworks to establish secure
connections. After establishing a connection encrypted with
an asymmetric algorithm, a shared secret is negotiated which
is used to encrypt future messages with a symmetric algo-
rithm. Symmetric algorithms increase performance of en- and
decryption by orders of magnitude.

a) b)

Fig. 2. Trust relations in a network without (a) and with (b) a central instance

The specification WS-Trust ([8]) defines a special Web
Service within a network called the Security Token Service
(STS). The STS is capable of issuing security tokens and
brokers trust. That is — assumed every participant trusts the
STS — that if the STS trusts a certain device, all other
participants may trust this device as well. This way, trust
relations may be established between a device and the STS,
not between every device participating in the network which
simplifies the process of establishing trust in a network with
many participants (see fig. 2). The drawback is, that trust
depends on a central instance which produces a single point of
failure on the one hand and requires high maintenance effort
on the other hand.

Since an STS is able to issue security tokens, it can also be
used as a central authorization instance. Again accepting high
maintenance effort, an STS could be aware of which client is
allowed to access which service, method or event source, it
can issue authorization tokens. If the requested service trusts
the STS, it will allow or deny access based on the token’s
content.

Most of these described concepts have inspired some se-
curity architectural proposals. Martinez et al. proposed an
architectural approach in [9] that suits well the needs of
e.g. large office networks with several hundreds or even
thousands of DPWS-compliant devices. The authors introduce
an authorization server and an authentication server as central
instances, similar to an STS described above. Besides, the
use of XML-Encryption is encouraged to provide multi-hop
communication with end-to-end security and independence
from a particular transport protocol (TLS/SSL requires TCP).
To increase efficiency, the authors recommend the use of
WS-SecureConversation to establish a secure context with
asymmetric algorithms and use a shared secret and symmetric
algorithms within the context to exchange SOAP messages.

Hernandez et al. also encourage the use of XML-Encryption
instead of TLS/SSL in [10]. The authors provide a proposal for
a security framework for highly resource-constrained DPWS-
compliant devices (e.g. with app. 10 kByte of runtime mem-
ory). The framework essentially increases efficiency by using
symmetric encryption, centralized deployment of network-
wide keys and slightly altering the WS-Security specification.
The drawbacks are, that in case of the network-wide keys
being compromised, high maintenance effort arises to restore
security and that the framework is no longer compliant with
the WS-Security specification.

IV. DPWS SECURITY FOR MOBILE DEVICES

Summing up, the aspects to cover were authentication
without a third party and associating a device’s identity with a
certificate, providing the capability to define fine-grained secu-
rity configurations including alternative security mechanisms
and to provide an authorization concept.

To address these problems, we developed an extended
security profile for DPWS, the WS4D Security Profile. The
extended profile was primarily developed for devices at least
as powerful as cell phones. Parts of the described solution
— especially regarding the developed architecture and the
prototype implementation — are specialized on in-vehicle-
infotainment (IVI) systems. That is, we assume that the vehicle
(the DPWS-Device) offers at least a display and the mobile
devices (the DPWS-Clients) offer at least a keypad. However,
we will discuss opportunities to make the extended profile
suitable for other use cases at the end of the section as well
as to point out under which circumstances the extended profile
is compliant with the original security profile.

Since the aspect of authorization does not play a role on
Web Service level, it is not part of the security profile. It is
discussed in the context of the developed architecture as a
recommendation on how to restrict access.

A. Introducing the WS4D Security Profile

To indicate that a DPWS-Device supports the WS4D Secu-
rity Profile, it uses types within the discovery and escription
messages. In addition to device types (e.g. printer) and service
types (e.g. print-service) the messages contain the newly
defined types ws4d-secure-device and ws4d-secure-service,
respectively.

The process of authentication — and therefore setting up
trust — is composed by the procedures of exchanging and
validating certificates as well as associating a certificate with
a device identity. Considering these two parts as a single
problem allows a simple approach: make two devices exchange
their certificates and verify that the received certificate belongs
to the device with which a trust relationship is supposed
to be established. To provide this functionality, the WS4D
Security Profile defines an Authentication Service, which is
a special Hosted Service of a DPWS-Device. Its only purpose
is to exchange certificates as well as a certain proof of the
communication partners’ identity. The term ’proof’ can be
substituted by any kind of knowledge — e.g. a short PIN
that has been exchanged out-of-band (OOB) — or a given
fact such as a dedicated connection over e.g. USB, Ethernet
or RFID. The Authentication Service is also responsible for
providing information about what authentication methods a
device is capable of. Thus, the Authentication Service’s de-
scription contains all suitable methods in its Policies. A client
can chose a suitable method for authentication based on the
Authentication Service’s description. Section V describes a
way for authentication based on exchanging a short PIN OOB.

Authentication can be considered as an additional commu-
nication phase in DPWS. Usually, there are the three phases
discovery, description and invocation of services (see fig. 3).

1 | Discovery
L J

B R
Device—Description

2 | Description
Service—Description

3 | Authentication
L J

3 ™
invoke methods

4 | Service Invocation

subscribe to events
I\)

Fig. 3. Extended communication phases of DPWS

Discovery & Description;
Messages contain certifi—
cates and signatures

sig—
natures verifi—
able?

Authen—|
tication

Fig. 4. Secure and insecure discovery and description

Invoke
services

"insecure" "secure”

Regarding the use of the WS4D Security Profile, discovery
and description are necessary for a client to discover the
device’s support of the profile. At the same time, signing
these messages assures authenticity and message integrity.
However, received discovery and description messages initially
cannot be authenticated as they are exchanged prior to the
authentication phase. Thus, a client needs to distinguish be-
tween secure and insecure discovery and description processes.
After authentication has taken place, buffered messages can
be verified or discovery and description can be repeated.
Messages’ authenticity and integrity can then be validated
because the parties’ certificates have been exchanged and
verified before (see fig. 4).

To enable different services’ methods and event sources to
require or support different security mechanisms, the Hosted
Services’ descriptions have to contain Policy sections that
describe the configuration. The Policy section consists of the
following parts:

1) WS4D Security Profile assertion
2) granularity: “Service” or “Method”
3) supported mechanisms for each entity

The granularity specifies whether the same security mech-
anisms are required by every method and event source of
a service (“Service”) or whether every method and event
source has different requirements (“Method”). The supported
mechanisms for each entity (the service or each method and
event source) are expressed as groups of fuples. A tuple
consists of a mechanism for providing message integrity and
a mechanism for providing confidentiality. If no Policies
are specified, it implies that all methods and event sources
support or require TLS/SSL to provide message integrity and

Policy
WS4D-Security-Profile

‘ Granularity: Method

SetNaviTarget

Exactly one (group)
Integrity: TLS,
Confidentiality: TLS

Integrity: CompactSignatures,
Confidentiality: XML-Encryption

GetCurrentlyPlaying
Exactly one (group)
Integrity: TLS,
Confidentiality: TLS

Integrity: CompactSignatures,
Confidentiality: XML-Encryption

Integrity: CompactSignatures,
Confidentiality: NONE

Fig. 5. Schematic example for security configuration policies

confidentiality for the sake of compliance (see end of this
section). Fig. 5 shows an example. The described service
contains two methods. SetNaviTarget supports TLS to provide
integrity and confidentiality as well as a combination from
WS-DD Compact Signatures and XML Encryption. The same
security mechanisms are supported by GetCurrentlyPlaying.
However, the latter one also accepts connections that don’t
provide confidentiality at all.

The WS4D Security Profile requires that a DPWS-Device
answers with an error message in case that a request comes
from a client that has not been authenticated or if the request
does not match the required security mechanisms. Regarding
a DPWS-Client, the WS4D Security Profile requires to distin-
guish between secure and insecure discovery and description
phases.

B. Architecture

To realize the WS4D Security Profile as well as an effective
authorization model, which is described below, the architecture
shown in fig. 6 has been developed. Its mode of operation
is now explained regarding a Device’s initialization phase
followed by the communication phases of DPWS.

When a Device is initiated (e.g. the software is started
or the device is turned on) every Hosted Service registers
its security requirements inside the Security Configuration
Database. This way, the according components can check
whether an incoming request fulfills the requirements.

For a DPWS-Device, there is no difference between secure
and insecure discovery / description. However, for some ap-
plications it can make sense to ignore unsigned messages or
to answer with an error message during these phases.

After discovery and description have been finished, a client
sends a request to the Authentication Service to initiate ex-
change and verification of certificates. While the Authentica-
tion Service merely provides the Web Service interface, the
Authentication Engine implements the logic to do the actual
authentication (e.g. generation and validation of proofs) and to
store authenticated certificates inside the Certificate Database.

mechanism for
authentication

user

decision

v DPWS—-Device

Certificate
Database

=

Authorization Sec. Conf.
Database

Authoriza—
tion Engine

Authentica—
tion Engine

Database

A A
“ o~
g 3
2) S 8
SRS) = < S
3z . S5 HEE
S I3 S IR
. 3|2 E*; SO S| S 2|2
authenticate a3 NES 818 SRR
8 S o3 S|=2 Q
certificate g 3 § A S| R $|8 s
S| & R‘& E 5| 5
: S 8
y y < &
Crypto—
- Security Engine
Engine
provide anounce requi— A
received red security <
ope . g)
certificate mechanisms S|
. RS
Hosted Hosted Hosting Sl<
. . . 2|8
Service 1 Service n Service \i
Authentication B
Service % % %
Y

‘ I Security ' Handler ! ‘
} A A 16
Client(s)

Fig. 6. Security Architecture

The components never access each other directly but always
indirectly through the Security Engine as an intermediary. This
ensures easy maintenance and interchangeability of the com-
ponents (e.g. for realizing different authentication methods).

When invoking a service’s method or registering to an event
source, the Security Handler is responsible for converting
secure contexts into insecure contexts and vice versa. For
incoming messages (requests, subscribe messages) this means,
that the Security Handler checks whether the embedded or
referenced certificate has been authenticated earlier. If so, the
Security Handler can make use of the Crypto Engine to verify
the messages signature (if any) using the public key from the
certificate. Eventually, it checks whether the required security
mechanisms are used by accessing the Security Configuration
Database. If, for example, XML-Encryption is used for pro-
viding confidentiality, the Security Handler is also responsible
for decrypting the encrypted message parts and replace the
ciphers with the plain text. If one of the checks fails, the
Security Handler immediately replies with an according error
message and discards the request. Otherwise, it will hand out
the checked and if necessary decrypted message to the Hosted
Service.

For outgoing messages (responses, events), the Security
Handler is responsible for signing and encrypting the message
where necessary.

As mentioned before, the architecture also implements an
effective authorization concept. When initializing a device,
authorization datasets can be saved in the Authorization
Database. An authorization dataset consists of

« a resource (e.g. a service, method, data field or physical
signal)

« a proof (e.g. a certain certificate, a certificate signed by
a certain CA or a username-password-combination)

o the authorization itself (granted / denied)

« a validity timestamp to enable temporarily limited deci-
sions (e.g. allow for today only or deny for the next 60
minutes)

Using the proposed authorization model allows the following
scenario: a certain Client A is allowed to access all methods
and event sources of a Hosted Service S, while Client B is only
allowed to subscribe to a certain event source. Also, every
client in possession of a certificate that has been signed by
a certain CA or can provide a certain username-password-
combination is allowed to access services for reconfiguring
the security settings.

Thus, the Security Handler has another task for incoming
messages: take care of authorization. This means, for an
incoming request it has to check, whether there exists a suit-
able authorization dataset. If not, it invokes the Authorization
Engine to ask for a decision of the user. Depending on the
decision, the Authorization Engine stores a new authorization
dataset and the Security Handler permits or denies access.

By using the proposed security architecture, the Hosted
Services’ implementations do not need to take care of any
security related tasks. That is with one exception: context-
based authorization. For example, with the proposed authoriza-
tion concept, it is possible to generate different responses for
different clients (proofs). You could consider an application
where a signal (resource) is available in two qualities of
accuracy. While most clients receive a response containing low
accuracy, few clients can provide an additional proof allowing
them to receive a result with high accuracy.

C. Possible Applications & Compliance

To be able to implement the WS4D Security Profile, a
device needs to meet some requirements. First of all, it must
provide the capability for some kind of OOB communication.
As mentioned before this can be as simple as being able to
display and/or enter a PIN code. This however implies that the
DPWS-Device needs a display and the Client needs a keypad.
Alternative approaches can be wired (USB, Ethernet, ...) or
short-range wireless (Bluetooth, ZigBee, RFID) communica-
tion and a push button to trigger exchange and verification
of certificates. Besides these peripherals, the devices should
be at least as powerful as cell phones. The CPU must be
powerful enough to cope with asymmetric encryption and a
device needs enough memory to store its own X.509 certificate
as well as a couple of certificates that have been received by
other devices. As mentioned in section III, Hernandez et al.
proposed an approach suitable for less powerful devices in
[10] that bases on symmetric algorithms. Also, van Engelen

and Zhang showed in [11] that round-trip-times decrease by
nearly an order of magnitude when signing messages using
symmetric HMAC algorithms compared to using asymmetric
algorithms such as DSA or RSA. Nevertheless, we decided
to use the public key infrastructure (PKI) deployed by X.509
certificates and the according asymmetric algorithms for the
sake of compliance. This means, that devices implementing
the WS4D Security Profile can interoperate with devices that
support the DPWS standard security profile under certain
circumstances that are now discussed.

If certificates are exchanged and verified before commu-
nication takes place (e.g. by copying them into the devices’
file systems), no authentication is necessary. Thus, there is no
need to distinguish between secure and insecure discovery and
description messages. Furthermore, if every service and each
of its methods and event sources support TLS/SSL connections
(or no security at all), and if description can be processed using
TLS/SSL, interoperability is given. The latter aspect is why the
absence of security configurations by means of Policy sections
within the description of a service is implicitly interpreted as
TLS/SSL being supported, as described earlier in this section.

V. PROTOTYPE & USE CASE

The described architecture was implemented to realize the
WS4D Security Profile. This section briefly describes a se-
curity plug-in for the DPWS stack WS4D-gSOAP ([12]) as
well as the use case applications. The former subsection also
describes a way for authentication based on the OOB exchange
of a one time PIN.

A. Security plug-in for WS4D-gSOAP

The DPWS stack WS4D-gSOAP is based on the well-
known Web Service framework gSOAP ([13]). It is written
in C and provides a flexible plug-in mechanism which makes
it very well extendable. Thus, the WS4D Security Profile was
developed as a security plug-in. A convenient API enables
a developer to easily set up the Authentication Service in a
device and initiate authentication from within a client. The
API also lets developers rapidly define authorization datasets
and de/activate user decisions on authorization for services or
single methods and event sources.

The Security Engine has been implemented as a plug-in
socket that the other components register at. This enables
developers to easily interchange single components. This way,
alternative Authentication or Authorization Engines can be
integrated or the databases for certificates or authorization
datasets may be real relational databases instead of plain text
files.

The Crypto Engine is responsible for providing crypto-
graphic functionality such as building message digests and
en- and decryption. In our implementation the Crypto Engine
is an interface to the popular open source library OpenSSL
([14]). Besides the cryptographic methods it also provides a
convenient API to deal with X.509 certificates.

As mentioned earlier, the use cases described in the next
section are located in the area of in-vehicle-infotainment.

Device Client
cert C
I
show
PIN certy, C,
PIN enter
{cert o, Gy, Gy PIN
{cert p, C,}PIN
Fig. 7. Authentication Handshake based on PIN exchanged OOB

Thus, we assumed that every DPWS-device has at least a
display and every DPWS-Client has some sort of keypad.
The prototype implementation of the Authentication Engine
therefore provides the logic for authentication based on the
OOB exchange of a one time PIN. Fig. 7 shows the basic com-
munication pattern of the developed authentication handshake.
The handshake consists of two requests and two responses.
The client initiates authentication by sending the first request
that merely contains the client’s certificate certc.

The Device generates a random one time pin (e.g. four
alphanumeric characters) and a random sequence of bytes (e.g.
128), the Challenge C';. Before responding, the Device saves
the Client’s certificate in the Certificate Database together with
the generated PIN, and the Challenge C;. After displaying the
PIN, the Device responds with its certificate certp and the
Challenge C,.

The Client’s user can now enter the PIN. To testify the
knowledge of the PIN and to prevent man-in-the-middle
attacks at the same time, the second request is encrypted with
a key derived from the PIN. The request contains the received
Challenge C;, a Challenge C> generated by the Client and
the Client’s certificate. Because the number of possible keys is
limited due to potentially short PINS, the Challenges’ purpose
is to increase entropy of the cypher texts.

The Device eventually decrypts the request with the key
derived from the PIN and compares certc and C; with the
according entries in the Certificate Database. If they match,
the certificate certc is authenticated.

Authentication of the Device happens in the same man-
ner. The Device responds with its certificate certp and the
Challenge C', both encrypted with the key derived from the
PIN. The Client decrypts the certificate and the challenge und
compares them with the values saved earlier.

B. Use Cases

The use cases are located in the area of in-vehicle-
infotainment (IVI). The board computer — the so called head
unit — implements a DPWS-Device and offers two Hosted
Services, the Remote Keyboard Service and the Car Data
Service.

The Remote Keyboard Service can receive keystrokes of
mobile devices such as smartphones and netbooks to make text
input more convenient. This functionality especially addresses

fellow passengers for applications such as searching the media
library or browsing the world wide web. The operator of
the car must have control over which device is allowed
to produce text input. Eventually, it is important that the
communication can not be eavesdropped. The WS4D Security
Profile allows authentication of devices without a third party.
Furthermore, the context-based authorization enables another
feature. It’s not too unlikely, that a fellow passenger may
type in one application (e.g. media library) but should not
be able to type in another application (e.g. entering navigation
target). An authorization model on service level is not able to
make this restriction. However, context-based authorization is.
Consider the fellow passenger’s identity as proof and the active
application as resource. The proposed authorization model is
then capable of distinguishing authorization to type in different
applications.

The Car Data Service is supposed to provide access to all
kind of information a car can offer. This includes maintenance
information, current GPS position or title and artist of the
currently played music. It also should be able to fire alarms
e.g. in case of running low on fuel. In some cases, the Car
Data Service should also enable the possibility to change
some information such as the current navigation target. Some
of this information — such as the currently played music —
might be accessible to everyone including passengers of other
cars. Thus, there is no need to provide message integrity or
confidentiality. On the other hand, every passenger inside the
car might be allowed to view the current GPS position and
navigation target while the car’s owner is the only one allowed
to change the latter one. When requesting maintenance infor-
mation, the owner should receive e.g. tire pressure or a date for
the next inspection while only certified car repair shops should
be able to access the engine’s calibration interface. The WS4D
Security Profile provides the ability to define different security
requirements for each method and event source of a Hosted
Service. The comprehensive authorization concept can limit
access based on previously authenticated certificates.

The prototypes of the use cases have been implemented
as simulations of real automotive scenarios. Specifically, the
result are three GUI applications based on the open source
graphics framework Qt4. One application simulates the head
unit which offers the services, the remaining two simulate
the clients (e.g. smartphones) consuming the services. DPWS
functionality is provided by WS4D-gSOAP and the security
requirements are provided by the implemented security plug-
in.

VI. OUTLOOK

A first version of the security plug-in for WS4D-gSOAP
is available at the project web site ([12]). While the current
state of the plug-in can be considered as pre-alpha, it is
under constant development. To ease the process of evaluation
of the security plug-in, the prototype applications have been
developed as GUI applications running on a PC. However,
once the security plug-in is in a stable state, the simulation
applications can easily be ported to real automotive hardware.

In the current state, the security plug-in allows security
configuration only at design time. To enable configuration
changes at run time, we are currently developing a Security
Management Service (SMS) as an interface through another
dedicated Hosted Service. The SMS has intentionally not been
integrated into the WS4D Security Profile as its necessity
as well as its interface might be very application-specific.
Another aspect to increase versatility of the WS4D Security
Profile is the consideration to provide the Authentication
Service with the ability to issue new certificates for clients
not having own certificates.

As mentioned earlier, the WS4D Security Profile is appli-
cable for devices at least as powerful as cell phones, since
dealing with X.509 certificates and asymmetric encryption
algorithms is expensive regarding memory consumption and
CPU time. We are now focusing on providing DPWS se-
curity in smart environments with potentially hundreds of
highly resource-constrained devices. In this context research
is necessary to find solutions how to provide authenticity,
message integrity, encryption and authorization in a network
with many participants most likely not being able to deal with
large certificates or asymmetric cryptography. To this end, the
next steps will be timing analysis regarding round-trip times
depending on processing power and used security mechanisms.
In addition, focus will move to symmetric encryption algo-
rithms and suitable ways for deploying shared secrets.

VII. CONCLUSION

This paper identifies shortcomings in the security profile
proposed in the DPWS specification regarding its applicability
to scenarios in which mobile devices such as cell phones are
supposed to communicate securely over Web Services. After
analyzing the existing security-related WS-* specifications
and related work, an approach for a new DPWS security
profile, the WS4D Security Profile, is presented. It provides
DPWS-Devices with the facility to establish trust between
devices directly and without third parties and allows fine-
grained security configurations for a Device’s services and
event sources. At the same time, it preserves compliance with
the original specifications under certain conditions. To restrict
access to different services, methods and event sources, the
developed architecture also proposes an authorization concept.
The security-related analysis and the implementation of the
IVI use cases show the effectiveness of the WS4D Security
Profile and propose a way for establishing trust by exchanging
a short one-time PIN out of band.

ACKNOWLEDGMENT

The authors would like to thank Prof. Dr. Harald Heinecke
for supporting this work by fostering cooperation between
BMW Car IT GmbH and the University of Rostock.

REFERENCES
[1] OASIS, “Devices Profile for Web Services Version 1.1,” http:

//docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws- 1.1-spec-o0s.html,
July 2009.

(2]

(3]

[4]

(51
(6]

(71

(8]

(9]

[10]

(1]

[12]
[13]

[14]

OASIS, “Web services dynamic discovery (ws-discovery) version 1.1,”
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.
1-spec-os.html, July 2009.

W3C: World Wide ‘Web Consortium, “Web services
eventing (ws-eventing),” http://www.w3.org/Submission/2006/
SUBM-WS-Eventing-20060315/, March 2006.

W3C: World Wide Web Consortium, “XML-Signature Syntax and Pro-
cessing,” http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212/,
February 2002.

OASIS, “Web Services Security: SOAP Message Security 1.1,” http:
//docs.oasis-open.org/wss/v1.1/, February 2006.

W3C: World Wide Web Consortium, “XML Encryption Syntax and
Processing - W3C Candidate Recommendation 04 March 2002,” http:
/Iwww.w3.0rg/TR/2002/CR-xmlenc-core-20020304/, March 2002.
OASIS, “WS-SecureConversation 1.3, http://docs.oasis-open.org/
ws-sx/ws-secureconversation/200512/ws-secureconversation- 1.3-0s.
html, March 2007.

OASIS, “WS-Trust 1.3, http://docs.oasis-open.org/ws-sx/ws-trust/
200512/ws-trust-1.3-spec-cs-01.html, November 2006.

J.-F. Martinez, M. Lépez, V. Herndndez, K. Jean-Marie, A.-B. Garcia,
L. Lépez, C. Herrera, and C.-J. Sanchez-Alarcos, “A security archi-
tectural approach for DPWS-based devices,” CollECTeR Iberoamérica,
2008.

V. Hernandez, L. Lopez, O. Prieto, J.-F. Martinez, A.-B. Garcia, and
A. Da-Silva, “Security Framework for DPWS Compliant Devices,” Third
International Conference on Emerging Security Information, Systems
and Technologies, 2009.

R. A. van Engelen and W. Zhang, “Identifying Opportunities for Web
Services Security Performance Optimizations,” Services, IEEE Congress
on, vol. 0, pp. 209-210, 2008.

WS4D.org, “WS4D - Web Services for Devices >> Stack: C (gSOAP),”
http://ws4d.e-technik.uni-rostock.de/?page_id=13.

R. Engelen, “gSOAP: SOAP C++ Web Services,” http://www.cs.fsu.edu/
~engelen/soap.html.

The OpenSSL Project, “OpenSSL: The Open Source toolkit for
SSL/TLS,” http://www.openssl.org/.

