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Abstract: Through the envisioned AUTOSAR methodology, the integration of 
hardware and software components shall become simpler and more flexible than 
ever. But in addition to standardized functional APIs, this approach also needs 
interfaces for non-functional component properties, specifically timing. However, 
formalizing the required parameters and defining new methodological steps is not 
trivial. In this paper, we illustrate ideas to structure timing properties by means of 
hand-over points and timing contracts using realistic examples, and we show how 
scheduling analysis provides key information to parameterize the resulting timing 
interfaces. Finally, we derive (sufficiently dark) gray-box timing chain segments 
that can be communicated between OEMs and suppliers without loss of IP 
protection. The resulting models are a) compatible with the AUTOSAR software 
architecture definitions and b) fit into the envisioned methodology. 

1 Introduction 
In today’s cars, the number and complexity of electronic functions is ever increasing. 
Functions that were introduced as innovations in luxury class cars become standard 
functions a few years later. For example the current BMW 3 series has almost the same 
amount of functionality as the previous 7 series. (see Figure 1). At the same time, the 
hardware topology is evolving, as lifecycles in the semiconductor industry are 
significantly shorter than in the automotive industry. In this context, function 
interoperability and software re-use are necessary to reach required productivity. 

 
Figure 1 Main Requirements for System Architecture from an OEM‘s Perspective [Ru07]. 



AUTOSAR [He06] has established an industry standard for automotive E/E 
architectures. The standardized software architecture with well-defined module 
interfaces are key enablers for main AUTOSAR goals such as re-use, interoperability, 
portability, and especially the flexibility to distribute and (re-) map software components  
to different hardware topologies. However, the system performance changes 
significantly with the mapping decisions in terms of bus load, ECU utilization, buffering 
delays, and finally end-to-end signal timing. Hence, finding an optimized mapping –a 
key step in the envisioned AUTOSAR methodology– requires consideration of the 
timing and performance behavior of the involved software components and their 
potential mapping and implementation on the hardware. But defining a timing model for 
AUTOSAR is a challenging task [Ri06]. 

As a promising starting point, timing can be approached through the concept of “timing 
chains” that provide analyzable or predictable temporal relations between AUTOSAR-
defined “observable events” [SR08]. These “observable events” represent actions such 
as “runnable starts” or “data sent” at which data or control is “handed over” from one 
component to another, e.g. between two software components, from a software 
component into basic software, from basic software to the bus hardware, etc.  

As an example let there be a function called “Automatic Door Opener”. This function 
opens the car’s doors automatically, when the user’s hand approaches the door knock 
and the car key is present in a close area around the car. The hardware key transmits a 
digital cryptographic key which is received and verified by an ECU. One typical high-
level timing requirement for this overall function could be that the doors must be 
unlocked within 100 milliseconds after the hand has approached. This kind of high-level 
end-to-end-latency timing requirements can usually be found in specification sheets. 
This overall latency between the two external events “hand approached” and “door 
unlocked” can be divided into different segments using internal observable events, e.g. 
hand recognition, digital key verification and opening the lock. Components implemen-
ting the functionality of these segments can be provided by different suppliers and have 
to be integrated with respect to the high-level requirement mentioned above. It is the 
system integrator’s responsibility to guarantee the fulfilment of the high-level require-
ments and thus himself formulate appropriate derived requirements for the suppliers. 

In general, the idea of introducing hand-over points (HOPs) to structure timing models 
via timing contracts is not new [Br04, Ri06]. A general concept to add non-functional 
requirements (e.g. timing, safety) to component models is described using so called Rich 
Components in [Da05]. The authors propose to use a special constraint language to  
express timing requirements for input-output relations of component ports. Our approach 
follows a similar idea though it is applied to the AUTOSAR methodology and especially 
to the timing chain concept. In this concept, contracts can represent a specification of the 
observable event’s timing properties at such HOPs (or groups of them). These could be 
formulated as guarantees, constraints, requirements, etc. In principle, the HOPs allow 
structuring and understanding what happens along a timing chain, whereas contracts 
allow abstractions from details of chain segments as a key means for OEMs and 
suppliers to communicate timing information without compromising IP protection. We 
will demonstrate these concepts using two prominent use cases in Sections 2 and 3.  
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Figure 2 ECU with three SW components and several HOPs 

 

Finally, HOPs and contracts must be defined such that the resulting model structure (and 
its parameters) supports analysis and verification because there is no point in modeling 
something that cannot be analyzed. Here, scheduling analysis concepts provide a good 
starting point because scheduling models are well structured and typically allow 
checking system-level properties based on component-level properties. Therefore, 
scheduling models and the idea of hand-over points and timing contracts fit together 
well. In Section 4, we use the SymTA/S scheduling analysis tool [He05] to generate 
gray-box timing chain segments from detailed models. Due to space limitations, we omit 
formal definitions but focus on the practical implications. 

2 SW Supplier & ECU Integrator 
In the first example, an ECU integrator deals with software components from several 
suppliers. To optimize the ECU configuration (step in AUTOSAR methodology) and 
verify the timing, the ECU integrator might use the following information about the 
supplied software, illustrated also in Figure 2: 

• HOPs (internal):  runnable start and end, possibly data send/receive and RTE calls 

• specification: runnable periods and runnable order  

• guarantees: runnable execution time, relative point in time where RTE is accessed; 
alternatively sequence of execution times and RTE calls 

• requirements: max. jitter of RTE-calls, max input-output-delay of one runnable or 
the entire software component 

From this data, the ECU integrator can map the runnables to tasks and configure the 
scheduling. Especially the contract requirements are useful to guide the decision making 
process and to optimize the runnable order, runnable-to-task mapping, etc. accordingly. 
Furthermore, the ECU integrator can analyze in detail the internal data-flow timing. The 
SymTA/S scheduling diagram in the bottom-left of Figure 3 illustrates the scope of 
information and analysis of the ECU integrator.  

In a similar way, also basic software (BSW) suppliers can specify execution times for 
functions that the runnables call, possible depending on the context of the BSW call. 
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Figure 3 Detailed Schedule of End-to-End Timing 

3 ECU Supplier & Network Integrator 
Now, the ECU from Section 2 is supplied and integrated with another ECU2 to a CAN 
bus. It is the OEM’s turn to build and optimize the network schedule. Here, the hand-
over points (or internal observable events) are: signal and frame generation and reception 
time. For these, period and jitter are the most relevant attributes. 

Analyzing the end-to-end delay along such a signal timing chain is a challenge [Ri07]. 
Figure 3 illustrates the SymTA/S implementation view (with tasks, frames, and signals) 
of a two-ECU system as well as the resulting SymTA/S scheduling diagram. We see that 
the first part of the end-to-end schedule equals the ECU-only timing as described in Sec. 
2. In addition, the CAN bus schedule, the relevant RTE and COM signal delays, and the 
schedule of the receiving ECU is shown.  

We want to note that the overall complexity of end-to-end analysis does not come from 
the priority-driven CAN arbitration. End-to-end timing analysis is also challenging for 
FlexRay. Despite its deterministic frame timing, the interaction of frame timing with 
signal timing and application task’s scheduling, in combination with multiple options for 
synchronization, turns end-to-end analysis of FlexRay into a challenging problem. This 
shows that certain COM properties cannot be chosen with full flexibility but might be 
restricted by the interfaces to some extend. In CAN networks, this applies to the frame 
buffering strategy in COM/DRV. 

4 Timing Chain Segments as Gray Boxes 
In the above network example, the ECUs were integrated into the end-to-end analysis 
with all details about tasks, scheduling, etc.. In practice, however, it is very unlikely that 
ECU suppliers pass such detailed models to OEMs for several reasons incl. IP 
protection. On the other hand, not exchanging this information would significantly 
compromise the OEMs ability to perform any end-to-end analysis. As a solution, we 
envision a gray-box-like model for segments of the timing chain. These segments must 
hold all parameters needed to perform the end-to-end analysis, and can hide the rest. 
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Figure 4 Network View with Gray-Box ECU Timing Models 

The definition of HOPs is already a large step towards timing chain segmentation and 
gray-box models. Each and every HOP is a potential connector of a timing chain 
segment. In Figure 3, we have already outlined the key properties of the segment from 
the sensor through the ECU1 until the signal is produced: 

• the period and jitter of signal generation times, derived from the 50ms task 
scheduling properties, 

• the delay from the sensor to the signal output, derived from the end-to-end 
scheduling analysis of ECU1, and 

• the maximum internal sampling period, i.e. 100ms, because this will affect the 
timing of new data at the output of the 50ms task 

These are the most relevant properties to perform the end-to-end analysis for the rest of 
the system (here: the bus and the second ECU) at the same level of accuracy just as if all 
details were available. The ECU suppliers can provide such excerpts as gray-box timing 
segments to the OEM who can then do the end-to-end analysis of the entire timing chain 
from the sensor to the actuator. A corresponding gray-box system is shown in Figure 4.  

An important question is at which level of accuracy such information shall be 
exchanged. This discussion is multi-dimensional. One dimension covers different phases 
of the design, where we could start with rough (inaccurate) estimates and refine them 
later. This lets us at least have basic sanity checks from early on. Another dimension is 
on the accuracy of the models itself. Mutually exclusive behavior, e.g. when we know 
that only one of two functions exhibits its worst case timing at the same time, is 
important. When ignored, analysis results are likely (too?) pessimistic [RO+07]. 
Furthermore, we must target analyzable models, i.e. models for which analysis strategies 
(and tools) exist. Other dimensions include modeling efficiency, comprehensibility, etc. 
Recent progress in bringing scheduling analysis theory to practice supports already a 
wide range of solutions [Ri07]. 

5 Summary and Conclusion 
In order to fully roll-out the envisioned AUTOSAR methodology, the existing standard 
must be complemented by a reasonable view on timing and performance issues. Taking 
optimized mapping and scheduling decisions requires knowing the performance 
implications. Reasonable timing models can provide the necessary guidance for the two 
most important steps in the AUTOSAR methodology: system generation (incl. mapping 
SW components to ECUs) and ECU configuration (incl. runnable-to-task mapping and 
scheduling). Even more importantly, mapping and scheduling decisions can be based on 



optimization strategies that also use timing-related quality metrics (e.g. minimization of 
the segment delay through a node or a COM-COM pair). 

In addition to capturing system timing, effective distributed development of such 
systems requires a clear separation of responsibilities among OEMs, Tier-1 suppliers, 
and various application and basic software suppliers. In this paper, we have illustrated 
how timing interfaces and contracts along timing chains of observable events can 
improve this process significantly.  

When chosen at the right places (hand-over points) in a chain, these contracts enable 
detailed timing analysis and verification locally and globally, which is important to 
understand and control the variety of timing effects within the implementation. Only 
then, designers can take reasonable actions to enforce more control on HOP timing and 
to fulfill constraints. Examples range from adjusting sensor sampling rates, selecting 
CPU speed ranges, or fine-tuning task or bus schedules. Furthermore, these HOPs are 
ideal candidates for abstracting from details and deriving gray-box timing chain models 
to be exchanged between the involved parties without compromising IP protection.  

In this paper, we have shown some very relevant use cases demonstrating the importance 
and application of timing interfaces. From a timing viewpoint, systematic HOPs and 
gray-box models provide essential means for the mentioned use cases. Furthermore, we 
have shown that –due to their structure– scheduling analysis models provide the 
necessary abstractions, enable gray-boxing, and support system-level timing analysis.  

Our idea of a timing interface introduced in this work fits well as an addition of 
AUTOSAR. But still AUTOSAR needs to be augmented with a basic timing model to 
enable the application of such timing interfaces. An initial timing model is currently 
developed within AUTOSAR for the next release. Symtavision is further contributing its 
knowledge to the EU-funded TIMMO project [Je07]. 
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