Interoperable AUTOSAR tooling with Artop

Sebastian Benz, Michael Rudorfer, and Christian Kniichel

BMW Car IT GmbH,
Petuelring 116, 80809 Miinchen, Germany
{sebastian.benz,michael.rudorfer,christian.knuechel}@bmw-carit.de
http://www.bmw-carit.de

Abstract. Developing tools for the automotive standard software ar-
chitecture AUTOSAR is challenging due to the complexity and hetero-
geneity of the underlying domain. Artop is our approach to solve these
challenges by providing a common, extensible tool platform with an im-
plementation of basic functionalities required by all AUTOSAR tools.
Artop thereby enables the tailoring of Artop-based tools to its user’s
needs by providing means to integrate and combine different function-
alities from different tool vendors. In this paper, we demonstrate the
application of Artop for a case study from BMW Group.

Keywords: model-based tooling, AUTOSAR, automotive

1 Introduction

AUTOSAR has been launched by the automotive industry to handle the in-
creased complexity of E/E systems. Its main objective is to create a basis for
industry collaboration on basic functions and to increase reuse of software across
different Electronic Control Units (ECUs). AUTOSAR achieves this by standard-
izing a common middleware that is independent of the underlying hardware: the
Runtime Environment (RTE). AUTOSAR systems are developed by a multi
step modeling-process that is described by the AUTOSAR methodology. Due to
the size of AUTOSAR systems, tooling is necessary for developing, maintaining,
and sharing development artifacts. Currently tools face the challenge of having
to handle huge models on different abstraction levels and from different points
of view.

In this paper, we first give an overview on common challenges for AUTOSAR
tooling. Then we present Artop, the AUTOSAR tool platform, as our approach
to solve these problems in a community. Finally, we demonstrate the application
of Artop for a case study at the BMW Group.

2 Challenges in AUTOSAR Tooling

The metamodel standardized in AUTOSAR is complex and requires tools that
provide abstractions that ease the development of AUTOSAR models. The AU-
TOSAR methodology describes the different modeling phases of an AUTOSAR



2 Interoperable AUTOSAR tooling with Artop

system. Each phase comprises of the creation of data models that describe dif-
ferent system aspects, such as ECU hardware configuration, system topology
description, and software component descriptions. The methodology results in
the generation of configuration parameters and production code, which imple-
ments the APIs of the software components. Due to the variety of systems that
must be supported, the whole metamodel is large and complex (the current AU-
TOSAR release consists of 881 classes). Thus, one important task of AUTOSAR
tooling is to guide and support the user in working with the complex data models
that are created as part of the AUTOSAR methodology.

The AUTOSAR standard is constantly evolving in order to cope with tech-
nical evolution!. A new release introduces new concepts to the standard and
includes maintenance changes to the previous releases. These changes often re-
sult in incompatibilities between different releases, on RTE as well as data model
level. However, the life cycle of a car is quite long (up to seven years of production
plus the duty to provide spare parts for up to 10 years after end of production).
In this period existing software must be maintained with the consequence that
tooling is required that supports older AUTOSAR releases. Thus, when imple-
menting an AUTOSAR tool one must find ways for supporting different releases
at the same time.

AUTOSAR systems are specified in a collaborative and distributed manner
which requires tools to support this by means of revision control, model merg-
ing, and model exchange. For example, first an OEM specifies the overall system
structure, then a supplier, which is responsible for implementing one of the soft-
ware components, enriches the component descriptions. Finally, these changes
must be merged back into the original model of the OEM. Even though, there
are well established approaches for revision control on textual level, when using
graphical notations there are still open issues.

The AUTOSAR standard covers different aspects of automotive software and
hardware. The diversity of the covered aspects requires different representations
of the underlying models. For example, communication channels between soft-
ware components can be represented intuitively in a graphical way, but other
aspects might be better represented using textual, or form-based editors. The
challenge is to be able to edit and view specific aspects of a model in the most
appropriate manner while at the same time keeping the underlying model con-
sistent. For example, when a software component is changed using a graphical
editor, changes must be propagated to textual editors showing the same soft-
ware component. Furthermore, non-functional modeling concerns, such as timing
or safety specifications, crosscut traditional decomposition criteria, e.g. the de-
composition into software components. This results in these specifications being
cluttered across the whole model, which opposes separation of concerns and
thereby hinders maintainability.

Probably the biggest challenge in AUTOSAR tooling is the diversity of the
AUTOSAR standard with its different abstraction levels, different development
phases, and different domains. The diversity manifests in a wide variety of differ-

! Specifications are available for information only via http://www.autosar.org



Interoperable AUTOSAR tooling with Artop 3

ent workflows that must be supported by an AUTOSAR tool depending on the
context of the current user. For example, an AUTOSAR tool for software devel-
oper needs completely different functionalities than a tool for a system architect.
Our experience is that there will never be “the AUTOSAR tool” that covers all
different aspects and functionalities. What is required is a tooling environment
that is extensible and that can be tailored to the needs of different users. In
the remainder of this paper we will introduce our approach for such a tooling
environment: Artop.

3 Artop - the AUTOSAR tool platform

To handle the variety of AUTOSAR modeling workflows, one must find a way
to tailor a tool for specific workflows by adding required features and removing
unnecessary ones. There are two main premises for such a tooling environment:
firstly, functionality must be portable, meaning that existing features can be
used across different tools. Secondly, the effort of implementing existing tools
with new features must be as low as possible such that missing features can be
added easily. Our goal is to have an ecosystem for AUTOSAR tools that consists
of a platform that provides common base functionalities required by all tools (e.g.
metamodel implementation) and which is complemented by individual features
from various providers.[2] To reach that goal the Artop User Group?, a group of
licensed users of the AUTOSAR standard, has been founded.[1] It was launched
in October 2008 and provides Artop - the AUTOSAR tool platform. It is run
by the Artop Design Members which currently are BMW Car IT, Continental
Engineering Services, Geensys and Peugeot Citron Automobiles.

One of the key prerequisites for a successful ecosystem is a common technical
platform that allows for easy adoption of the platform and for easy extension
of the commodities by the differentiating features of the individual company.
Eclipse® is an open source community, whose projects are focused on building
an open development platform and that clearly fulfills this requirement. Amongst
other functionalities Artop comes with metamodel implementations of the AU-
TOSAR standard in versions 2.0, 2.1, 3.0, 3.1 and 4.0. One of the technology
projects that complement Eclipse is the Eclipse Modeling Framework (EMF).
EMF, is based on Ecore, a language for defining the abstract syntax of modeling
languages. There exists a wide variety of frameworks based on EMF that support
different use cases such as, building graphical or textual editors, model transfor-
mation languages, or code generation frameworks. The AUTOSAR metamodels
are implemented using EMF which takes tool interoperability one step further:
Where former tools were only able to exchange data in form of the AUTOSAR
XML files on the file level, the EMF model allows different features from differ-
ent authors to work in parallel on the exact same model in memory. In the next
section we demonstrate how we used the functionalities provided by Eclipse,
EMF, and Artop for tailoring an Artop-based IDE to our needs.

2 http://www.artop.org
3 http:www.eclipse.org



4 Interoperable AUTOSAR tooling with Artop

4 Case Study

This section presents a case study, in which we tailored an Artop-based IDE to
the needs of an AUTOSAR software developer at BMW Group. A developer faces
the following tasks when implementing a new AUTOSAR software component:

Specify software components: An AUTOSAR model must be created that
specifies the software components, the required and provided interfaces, as
well as the runnables that comprise this software component.

Generate interface code: AUTOSAR standardizes a C API for software com-
ponents and runnables. The API code is generated from the software com-
ponent specification that is defined in the previous task.

Implement software component behavior: The actual behavior of a soft-
ware component is implemented in C, which requires a C development IDE.

Write unit tests: Software components should be developed in a test-driven
manner. This requires that software components can be tested inside of the
IDE without deploying the software to the actual target, which inhibits in-
stant feedback during development.

Currently there is no AUTOSAR tool available that supports all these use
cases within the same tool. However, by using an Artop-based tool we were able
to create an IDE for AUTOSAR software components that fulfills exactly these
use cases by combining existing features with newly created ones.

4.1 Specifying software components with ARText

Textual languages provide a fast and efficient way of creating models. Artop
provides ARText, a framework for defining textual languages for AUTOSAR?.
Part of Artop is the ARText-based software component language (ASCL). We
use ASCL for specifying software components. Models described in ASCL are
abstractions of the actual AUTOSAR metamodel. This has the advantage that
the language is easy to understand and that software components are specified
in an AUTOSAR release independent way. Part of ASCL are model transformers
that transform ASCL models into instances of different AUTOSAR releases and
thereby provides release independent development of AUTOSAR models. Figure
1 shows an example specification of a software component.

4.2 Generating production code:

The communication between different software components is performed by the
AUTOSAR RTE. This requires the actual implementation of a software com-
ponent to implement a corresponding API that is generated from the software
component description. We integrated an existing code generator for the soft-
ware component interface code into Artop. The code generator takes as input
the AUTOSAR models that are generated by ASCL and is triggered from within
the IDE.

4 Screencast introducing ARText http://vimeo.com/channels/artext



Interoperable AUTOSAR tooling with Artop 5

package arpSafetyCar

interface clientServer ILifecycle {
operation changeVehicleMode {
in EVehicleMode vehicleMode out tBoolean success
J
}

component application ModeManager {
ports {
receiver rMode requires IVehicleMode
3
3

Fig. 1. Software component specification in ARText software component language.

4.3 Implementing software components using CDT

For implementing the actual behavior of the software components, we used
CDT®, which is a fully functional C and C++ development environment based
on the Eclipse platform (see Figure 2 for an example). Because Artop and CDT
are based on Eclipse, CDT can be easily integrated into an Artop-based IDE.
This results in having a modeling and programming environment integrated into
the same IDE which eases development by enabling a seamless workflow.

#tinclude "Rte_Type.h" // generated
#include "Rte_ModeManager.h" // generated

void ModeManager_run(void)

// Mode manager implementation

}

Fig. 2. Software component implementation in C using CDT.

4.4 Unit testing software components with JAC

The goal is to develop software components in a test-driven manner. Currently,
there exists no unit testing framework for AUTOSAR components, which is
why we developed the Java AUTOSAR Components testing framework (JAC).
In JAC tests can be specified in Java (or any other JVM-based language) using
Junit, which makes test case implementation more efficient than writing tests in
C (see Figure 3 for an example test case). Part of JAC is a code generator for
a test-specific-RTE which can be triggered from test cases written in Java. The
effort of developing an own testing environment was considerably low, because

® http://www.eclipse.org/cdt/



6 Interoperable AUTOSAR tooling with Artop

Artop and Eclipse enabled us to use existing frameworks for unit testing (Junit®),
model transformation (QVTT), code generation (Xpand®).

public ModeManagerTestRte rte = new ModeManagerTestRte();

public void testModeManager() throws Exception {
rte.setRequestedMode (EVehicleMode_Maintenance);
rte.testModeManager_run();
assertTrue(modesInBuffers(EVehicleMode_Maintenance));

}

Fig. 3. Test specification in Java with Junit.

5 Conclusion

Artop demonstrates how to build a model-based tooling ecosystem hat sup-
ports close interoperability of tools needed to develop systems following the
development path of the AUTOSAR standard. Our case study exemplifies the
application of Artop for creating a tooling environment that supports model de-
velopment, production code generation, test harness generation, and test case
specification. Such an integrated development environment enables a continuous
workflow and thereby greatly benefits developer productivity. This has been pos-
sible because of the usage of an open and extensible platform that enables the
integration of different tooling fragments and thereby tailoring it to the specific
needs of an AUTOSAR developer. A key factor for the success of Artop can be
attributed to the existing ecosystems it is built upon, such as Eclipse and EMF.
Users of Artop can greatly benefit from the existing functionalities offered by
these ecosystems.

Acknowledgments. We thank Tilmann Ochs, Dana Wong, and Stefan Schmierer
for their input and helpful comments on this paper.

References

1. Harald Heinecke, Michael Rudorfer, Paul Hoser, Christoph Ainhauser, and Oliver
Scheickl. Enabling of autosar system design using eclipse-based tooling. European
Conference of Embedded Real-Time Software, 2008.

2. Michael Rudorfer, Christian Knchel, Stephan Eberle, Romain Sezestre, Stefan Vo-
get, Robert Kiss, and Aldric Loyer. Artop an ecosystem approach for collaborative
autosar tool development. European Conference of Embedded Real-Time Software,
2010.

5 http://www.junit.org
" http://www.eclipse.org/m2m/
8 http://www.eclipse.org/modeling/m2t /?project=xpand



